More Evidence Emerges That Insecticides Are Responsible For Collapse of Honey Bee Colonies

Flickr - bee - wwarbyApril McCarthy, Prevent Disease
Waking Times

Two widely used neonicotinoids–a class of insecticide–appear to significantly harm honey bee colonies over the winter, particularly during colder winters, according to a new study from Harvard School of Public Health (HSPH).

The study replicated a 2012 finding from the same research group that found a link between low doses of imidacloprid and Colony Collapse Disorder (CCD), in which bees abandon their hives over the winter and eventually die. The new study also found that low doses of a second neonicotinoid, clothianidin, had the same negative effect.

Simple, straightforward and commonsense protections have not been updated for more than 20 years. According to Beyond Pesticides’ BEE Protective campaign, outside the neonicotinoid class of insecticides, fipronil has been heavily implicated in elevated bee toxicity and decline. The chemical is widely used for indoor and turf pest control in the U.S., and is a generation of insecticide that is highly toxic. Fipronil has been shown to reduce behavioral function and learning performances in honeybees.


  • Further, although other studies have suggested that CCD-related mortality in honey bee colonies may come from bees’ reduced resistance to mites or parasites as a result of exposure to pesticides, the new study found that bees in the hives exhibiting CCD had almost identical levels of pathogen infestation as a group of control hives, most of which survived the winter. This finding suggests that the neonicotinoids are causing some other kind of biological mechanism in bees that in turn leads to CCD.

    The study appears online May 9, 2014 in the Bulletin of Insectology.

    “We demonstrated again in this study that neonicotinoids are highly likely to be responsible for triggering CCD in honey bee hives that were healthy prior to the arrival of winter,” said lead author Chensheng (Alex) Lu, associate professor of environmental exposure biology at HSPH.

    Since 2006, there have been significant losses of honey bees from CCD. Pinpointing the cause is crucial to mitigating this problem since bees are prime pollinators of roughly one-third of all crops worldwide. Experts have considered a number of possible causes, including pathogen infestation, beekeeping practices, and pesticide exposure. Recent findings, including a 2012 study by Lu and colleagues, suggest that CCD is related specifically to neonicotinoids, which may impair bees’ neurological functions. Imidacloprid and clothianidin both belong to this group.

    Lu and his co-authors from the Worcester County Beekeepers Association studied the health of 18 bee colonies in three locations in central Massachusetts from October 2012 through April 2013. At each location, the researchers separated six colonies into three groups–one treated with imidacloprid, one with clothianidin, and one untreated.

    “For over a decade now, honey bees have been suffering rapid population losses as a result of a phenomenon known as ‘colony collapse disorder.’ Another decade of these mass die-offs will severely threaten our agricultural economy and food supply. Scientists have reported that common symptoms of this decline are attributed to the use of a class of insecticides known as neonicotinoids. The ‘Saving America’s Pollinators Act’ will address this threat to honey bee populations by suspending the use of certain neonicotinoids and by requiring the EPA to conduct a full review of the scientific evidence before allowing the entry of other neonicotinoids into the market.”

    There was a steady decline in the size of all the bee colonies through the beginning of winter–typical among hives during the colder months in New England. Beginning in January 2013, bee populations in the control colonies began to increase as expected, but populations in the neonicotinoid-treated hives continued to decline. By April 2013, 6 out of 12 of the neonicotinoid-treated colonies were lost, with abandoned hives that are typical of CCD. Only one of the control colonies was lost–thousands of dead bees were found inside the hive–with what appeared to be symptoms of a common intestinal parasite called Nosema ceranae.

    While the 12 pesticide-treated hives in the current study experienced a 50% CCD mortality rate, the authors noted that, in their 2012 study, bees in pesticide-treated hives had a much higher CCD mortality rate–94%. That earlier bee die-off occurred during the particularly cold and prolonged winter of 2010-2011 in central Massachusetts, leading the authors to speculate that colder temperatures, in combination with neonicotinoids, may play a role in the severity of CCD.

    “Although we have demonstrated the validity of the association between neonicotinoids and CCD in this study, future research could help elucidate the biological mechanism that is responsible for linking sub-lethal neonicotinoid exposures to CCD,” said Lu. “Hopefully we can reverse the continuing trend of honey bee loss.”

    About the Author

    April McCarthy is a community journalist playing an active role reporting and analyzing world events to advance our health and eco-friendly initiatives.

    ~~ Help Waking Times to raise the vibration by sharing this article with the buttons below…


    No, thanks!

    -->